Pediatr Blood Cancer 2011 Feb 22
A cost effectiveness analysis of thiopurine methyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia.   
ABSTRACT
BACKGROUND
An increased understanding of the genetic basis of disease creates a demand for personalized medicine and more genetic testing for diagnosis and treatment. The objective was to assess the incremental cost-effectiveness per life-month gained of thiopurine methyltransferase (TPMT) genotyping to guide doses of 6-mercaptopurine (6-MP) in children with acute lymphoblastic leukemia (ALL) compared to enzymatic testing and standard weight-based dosing.
PROCEDURE
A cost-effectiveness analysis was conducted from a health care system perspective comparing costs and consequences over 3 months. Decision analysis was used to evaluate the impact of TPMT tests on preventing myelosuppression and improving survival in ALL patients receiving 6-MP. Direct medical costs included laboratory tests, medications, physician services, pharmacy and inpatient care. Probabilities were derived from published evidence. Survival was measured in life-months. The robustness of the results to variable uncertainty was tested in one-way sensitivity analyses. Probabilistic sensitivity analysis examined the impact of parameter uncertainty and generated confidence intervals around point estimates.
RESULTS
Neither of the testing interventions showed a benefit in survival compared to weight-based dosing. Both test strategies were more costly compared to weight-based dosing. Incremental costs per child (95% confidence interval) were $277 ($112, $442) and $298 ($392, $421) for the genotyping and phenotyping strategies, respectively, compared to weight-based dosing.
CONCLUSIONS
The present analysis suggests that screening for TPMT mutations using either genotype or enzymatic laboratory tests prior to the administration of 6-MP in pediatric ALL patients is not cost-effective.

Related Questions